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Copula method plays an essential rule to study the dependence between data 
variables especially in bivariate distribution. It is noted that some bivariate 
models are constructed with uncomplete information of distributions. Copula 
improves the reliability of applications such as flood peak. Weibull 
distribution is a popular used in engineering, theory, medical and survival 
analysis. Despite its spread, it is known that the Weibull distribution could 
not implement the data set with non-monotone failure rate. In such case, 
many papers have suggested a modification and generalization of Weibull 
model. One of generalization is made through the baseline distribution by 
adding more shape parameters. The main purpose of our paper is to present 
some new bivariate Weibull models with respect to G cumulative 
distributions of baseline distribution. This approach converges the power 
series of probability distribution.  We use the copula function to construct 
the bivariate Weibull distribution. The proposed models provide high 
flexibility and can be used effectively for modeling dataset with a different 
structure. We provide special cases in details namely; bivariate Weibull-
exponential, bivariate Weibull-Rayleigh and bivariate Weibull Chi-square. We 
use Gaussian copula function to merge the dependent distributions, this 
copula is popular used in various applications like econometrics and finance. 
We discuss some structural properties of the proposed models. In order to 
estimate the model parameters, we discuss parametric methods via 
maximum likelihood estimation and modified maximum likelihood methods. 
In addition, we use the moment methods as semi-parametric methods for 
parameters estimations. Finally, Simulations are studied to illustrate 
methods of inference discussed and study the performance of new 
distributions. 
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1. Introduction 

*An increased scientific effort has been made to 
propose generators for continuous families of 
univariate distributions of only one random variable 
through the baseline distribution by adding more 
shape parameters. Other generators such as, beta-G 
distributions presented by Eugene et al. (2002), and 
exponentiated generalized–G distributions proposed 
by Cordeiro et al. (2013), some methods are 
discussed in Nadarajah and Rocha (2015). The class 
of Weibull G distributions (WG) has received an 
increasing amount of attention in recent years. Many 
studies conducted based on the properties and 
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inferences of Weibull G distributions with a 
consideration to their applications. Our aim is to 
propose new bivariate Weibull G distributions. The 
class of bivariate models proposed, in this paper, 
presents more flexible in WG marginals and in 
dependence structure. Bivariate Weibull-
exponential, Bivariate Weibull-Rayleigh and 
Bivariate Weibull Chi-square are considered with 
several fields of application. The (WG) probability 
density function (PDF) is the following: 

 
𝑓(𝑡, 𝛼, 𝛽, 𝛿) =
𝛼

𝛽𝛼
𝑔(𝑡,𝛿)

1−𝐺(𝑡,𝛿)
{−

𝑙𝑜𝑔[1−𝐺(𝑡,𝛿)]

𝛽
}
𝛼−1

𝑒𝑥𝑝 {− [−
𝑙𝑜𝑔[1−𝐺(𝑡,𝛿)]

𝛽
]
𝛼

} , 𝑡 ≥

0                                                                                    (1)  
 
The 𝑔(𝑡, 𝛿)  is the probability density distribution 

PDF and 𝐺(𝑡, 𝛿) is a cumulative distribution CDF of t, 
where t in the range of 𝑔(𝑡, 𝛿). The β is known as 
scale parameter and takes positive values, while 𝛼  
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considers as the shape parameter with positive 
values. The Weibull G distribution function (Cdf) is 
as follows: 

 

𝐹(𝑡, 𝛼, 𝛽, 𝛿) = 1 − 𝑒𝑥𝑝 {[−
𝑙𝑜𝑔[1−𝐺(𝑡,𝛿)]

𝛽
]
𝛼

}                           (2) 

 
The Weibull G quantile function is  
 

𝐹−1(𝑃, 𝛿) = 𝐺−1 (1 − 𝑒𝑥𝑝 {−𝛽[−𝑙𝑜𝑔(1 − 𝑃)]
1
𝛼⁄ })          (3) 

 
where 0≤ p ≤1, the scale parameter β takes positive 
values, while 𝛼  considers as the shape parameter 
with positive values. The Weibull G hazard rate 
functions is given by 

 
ℎ(𝑡, 𝛼, 𝛽, 𝛿) =
𝛼

𝛽𝛼
𝑔(𝑡,𝛿)

1−𝐺(𝑡,𝛿)
{−

𝑙𝑜𝑔[1−𝐺(𝑡,𝛿)]

𝛽
}
𝛼−1

𝑒𝑥𝑝 {−2 [−
𝑙𝑜𝑔[1−𝐺(𝑡,𝛿)]

𝛽
]
𝛼

} .   

                                                        (4) 

 
Note that pdf, cdf, quantile and random numbers 

of the Weibull G (WG) distribution are discussed by 
Alzaatreh et al. (2013a). Class Weibull G 
distributions discussed in the several papers such 
that, the Weibull Pareto distribution Alzaatreh et al. 
(2013a), Weibull G distributions also due to 
Alzaatreh et al. (2013b), Nadarajah et al., (2015), and 
Nadarajah and Rocha (2015). Copulas are a general 
tool to construct multivariate distributions and 
study the dependence structure between random 
variables. We show that copulas can used to solve 
many important problems. Several bivariate and 
multivariate lifetime distributions are suggested 
using several methods of constructing bivariate and 
multivariate distributions and copula functions have 
been proposed by Nelsen  (1999), Trivedi and 
Zimmer (2007), Adham et al. (2016), Abd Elaal 
(2017), and Abd Elaal and Alzahrani (2017), among 
others. The purpose of this article is to explain 
bivariate Weibull G(BWG) models incorporate with 
Gaussian copula function. The organization of paper 
as follows. Some special models of univariate WG 
distributions are explained in next Section. New class 
of bivariate Weibull G (BWG) models which uses 
Gaussian copula as a merge index is introduced in 
Section 3. Section 4 illustrates some special models 
of bivariate Weibull G distributions based on 
Gaussian copula. Parametric and semi-parametric 
methods are used to estimate the parameters of 
BWG models are presented in Section 5.  In Section 6, 
goodness of fit test statistics for the bivariate 
Weibull G (BWG) models is used to check the 
performance of the selected copula function. Finally, 
the performance of the suggested models using a 
simulation data is explained in Section 7. Section 8 
discusses the simulation results. Finally, the 
conclusion is drawn in section 9.   

2. Special models of univariate WG distributions 

This section presents some special distribution of 
univariate WG distributions. 

2.1. Weibull-uniform distribution 

Consider 𝑔(𝑡) with uniform distribution on the 
interval (0,r), r > 0.  

 

𝑔(𝑡; 𝑟) =
1

𝑟
   ,   0 < x < r < ∞, 

 
and  

 

𝐺(𝑡; 𝑟) =  
𝑡

𝑟
 . 

 
The Weibull-Uniform (WU) distribution PDF and 

CDF are formed as, respectively 
 

𝑓(𝑡, 𝛼, 𝛽, 𝑟) =
𝛼

𝑟

𝛽𝛼[1−
𝑡

𝑟
]
{−

𝑙𝑜𝑔[ 1−
𝑡

𝑟
]

𝛽
}

𝛼−1

𝑒𝑥𝑝 {− [−
𝑙𝑜𝑔[ 1−

𝑡

𝑟
]

𝛽
]

𝛼

} 

                                       (5)  

 
and 
 

𝐹(𝑡, 𝛼, 𝛽, 𝑟) = 1 − 𝑒𝑥𝑝 {− [−
𝑙𝑜𝑔[ 1−

𝑡

𝑟
]

𝛽
]

𝛼

}                               (6) 

 
where , 0 < 𝑡 < 𝑟 < ∞   , 𝑎𝑛𝑑    𝛼, 𝛽, 𝑟 > 0. 

2.2. Weibull-exponential distribution 

Now, if 𝑔(𝑡) is an Exponential distribution. The 
PDF and CDF are 
 
𝑔(𝑡; 𝑟) =  𝑟 exp(−𝑟𝑡),     0 <t< r < ∞,  
 
and  
 
𝐺(𝑡; 𝑟)= 1 − exp(−𝑟𝑡),  

 
and then the Weibull-Exponential (WEXP) 
distribution PDF and CDF are formed as, respectively 
for 𝑡, 𝛼, 𝛽, 𝑟 > 0 
 

𝑓(𝑡, 𝛼, 𝛽, 𝑟) =
𝛼𝑟𝛼

𝛽2𝛼−1
𝑡𝛼−1𝑒𝑥𝑝 {− [

𝑟𝑡

𝛽
]
𝛼
}                                    (7) 

 
and 
 

𝐹(𝑡, 𝛼, 𝛽, 𝑟) = 1 − 𝑒𝑥𝑝 {− [
𝑟𝑡

𝛽
]
𝛼
}                                                (8)  

2.3. Weibull-Rayleigh distribution 

Let 𝑔(𝑡) is Rayleigh distribution. We have 
  

𝑔(𝑡; 𝑟) =  2𝑟𝑡 exp(−𝑟𝑡2),, 0 < t < r < ∞,  
 

and  
 
𝐺(𝑡; 𝑟)= 1 − exp(−𝑟𝑡2),   

 
and then the Weibull-Rayleigh (WR) distribution 
PDF and  CDF are formed as, respectively 

𝑓(𝑡, 𝛼, 𝛽, 𝑟) =
2𝛼𝑟𝛼

𝛽2𝛼−1
𝑡2𝛼−1𝑒𝑥𝑝 {− [

𝑟𝑡2

𝛽
]
𝛼

}                                (9)  
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𝐹(𝑡, 𝛼, 𝛽, 𝑟) = 𝑒𝑥𝑝 {− [
𝑟𝑡2

𝛽
]
𝛼

},  𝑓𝑜𝑟 𝑡, 𝛼, 𝛽, 𝑟 > 0.                (10)  

2.4. Weibull-Chi-square distribution 

Let  𝑔(𝑡) is Chi-square distribution. We have 
 

𝑔(𝑡; 𝑟) =  2
−
𝑟
2

Γ(
𝑟
2
)
    𝑡

𝑟
2
−1 exp(−𝑡

2
);  

 
where 𝑡, 𝛼, 𝛽, 𝑟 >0  
 
and 
 

𝐺(𝑡; 𝑟) =  
Γ(𝑡,𝑟2)

Γ(𝑟2)
  

 

where Γ(𝑡, 𝑟
2
) is incomplete gamma and then Weibull-

Chi-square  (WCHI) distribution PDF and CDF 
distribution are formed as, respectively, for 
 𝑡, 𝛼, 𝛽, 𝑟 > 0,  
 
𝑓(𝑡, 𝛼, 𝛽, 𝑟)

=
𝛼2

−
𝑟
2

Γ(𝑟2)
𝑡
𝑟
2−1 exp(−𝑡

2
)

𝛽𝛼 [1 −
1 ∗ Γ(𝑡, 𝑟

2
)

Γ(𝑟2)
]
{
 
 

 
 

−

𝑙𝑜𝑔 [ 1 −
1 − Γ(𝑡, 𝑟

2
)

Γ(𝑟
2
)

]

𝛽

}
 
 

 
 
𝛼−1

 

𝑒𝑥𝑝{−[−
𝑙𝑜𝑔[ 1−

1−Γ(𝑡,
𝑟
2)

Γ(
𝑟
2
)
]

𝛽
]

𝛼

},                                                     (11)  

 
and 
 

𝐹(𝑡, 𝛼, 𝛽, 𝑟) = 1 − 𝑒𝑥𝑝{−[−
𝑙𝑜𝑔[ 1−

1−Γ(𝑡,
𝑟
2
)

Γ(
𝑟
2)

]

𝛽
]

𝛼

} ;  𝑡, 𝛼, 𝛽, 𝑟 > 0   

                    (12)   
 
The data structure of the WG distributions can 

take different shapes such as bathtub, symmetrical, J 
shaped, skewed, various shapes of bathtub. This fact 
implies that the WG and BWG distributions provide 
more flexibility and deal with different data sets with 
various shapes. 

3. Bivariate Weibull-G distributions based on 
Gaussian copula  

The concept of copula suggested and derived by 
(Sklar, 1959), stated that any multivariate 
distribution can be disintegrated to a copula and its 
continues marginal. For the bivariate case, copulas 
are used to link two marginal distributions with joint 
distribution such that for every bivariate distribution 
function 𝐹(𝑡1, 𝑡2) with continuous marginal 
𝐹(𝑡1), 𝐹(𝑡2), there exist a unique copula function C as 
follows: 

 
𝐹(𝑡1, 𝑡2) = 𝐶{𝐹(𝑡1), 𝐹(𝑡2)},                                                      (13) 

where   (𝑡1, 𝑡2) ∈ (−∞,∞) × (−∞,∞).   
 

The pdf function of bivariate distribution gives as 

𝑓(𝑡1, 𝑡2) = 𝑓1(𝑡1)𝑓2(𝑡2)𝑐(𝐹1(𝑡1), 𝐹2(𝑡2)                  (14) 

 
where 𝑐(𝐹1(𝑡1), 𝐹2(𝑡2) is the density function of 
copula see (Nelsen, 1999).  Several copula functions 
are used to construct BWG distributions with WG 
marginal given by (1). In this article, we will apply 
Gaussian copula to construct BWG distributions. The 
formula of Gaussian copula is  

 
𝐶(𝑢, 𝑣) = 𝜑Σ(𝜑

−1(𝑢), 𝜑−1(𝑣))                                               (15) 

 
where 𝜑Σ denotes the distribution function of a 
bivariate standard normal random variable and 𝜑−1 
represents its inverse. Now, the joint PDF of 𝑇1 and 
𝑇2based on Gaussian copula becomes 
 

𝑓(𝑡1, 𝑡2) = 𝑓1(𝑡1)𝑓2(𝑡2) {
1

√1−𝜌2
(exp[

−𝜌

2(1−𝜌2)
{𝜌(𝑧1

2 + 𝑧2
2) −

2𝑧1 𝑧2 }])},                                                                                    (16) 

 
Where 𝜌 ∈ [−1,1] is a dependence parameter and 
𝑓1(𝑡1), 𝑓2(𝑡2) is the density function of WG 
distributions in (1). 

4. The proposed models: Special models of 
bivariate Weibull-G distributions based on 
Gaussian copula 

The class of Bivariate Weibull G distributions 
based on Gaussian copula is presented in this 
section, we illustrate our proposed special models in 
next sub-sections. 

4.1. Bivariate Weibull-uniform distribution 

Suppose we have two random variables where 
their marginals followed Weibull-Uniform (WU) 
distribution. Hence, the bivariate Weibull-Uniform 
(BWU) distribution PDF, the joint PDF of 𝑇1 and 𝑇2 
based on Gaussian copula, is  

 

𝑓 (𝑡1, 𝑡2, 𝛼, 𝛽, 𝑟) =

 ∏

𝛼𝑗

𝑟𝑗

𝛽𝑗
𝛼𝑗[1−

𝑡

𝑟𝑗
]

{−
𝑙𝑜𝑔[ 1−

𝑡

𝑟𝑗
]

𝛽𝑗
}

𝛼𝑗−1

2
𝑗=1 𝑒𝑥𝑝 {− [−

𝑙𝑜𝑔[ 1−
𝑡

𝑟𝑗
]

𝛽𝑗
]

𝛼𝑗

}  

{
1

√1−𝜌2
(exp[

−𝜌

2(1−𝜌2)
{𝜌(𝑧1

2 + 𝑧2
2) − 2𝑧1𝑧2}])},                      (17) 

 
where 
 
 0 < 𝑡𝑗 < 𝑟𝑗 < ∞,   𝛼𝑗 , 𝛽𝑗 , 𝑟𝑗 > 0,  

 
and 𝜌 ∈ [−1,1] is a correlation parameter of model 
also known as a dependence parameter. 

4.2. Bivariate Weibull-exponential distribution 

Let the marginals have Weibull-Exponential 
(WEXP) distribution then the bivariate Weibull-
Exponential (BWEXP) distribution PDF is 
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𝑓 (𝑡1, 𝑡2, 𝛼, 𝛽, 𝑟) =

 ∏
𝛼𝑗𝑟𝑗

𝛼𝑗

𝛽𝑗
2𝛼𝑗−1

𝑡𝑗
𝛼𝑗−1𝑒𝑥𝑝 {− [

𝑟𝑗𝑡𝑗

𝛽𝑗
]
𝛼𝑗

}2
𝑗=1 {

1

√1−𝜌2
(exp[

−𝜌

2(1−𝜌2)
{𝜌(𝑧1

2 +

 𝑧2
2) − 2𝑧1𝑧2}])} ,     𝑡𝑗 , 𝛼𝑗 , 𝛽𝑗 , 𝑟𝑗 > 0,                                       (18) 

where  𝜌 ∈ [−1,1] is a dependence parameter. Fig. 1 
displays the curve and the contour of BWEXP model. 

 

 
(a) 

 
(b) 

Fig. 1: (a) the contour plot of simulation data from BWE based on Gaussian copula (b) the PDF curve of simulation data from 
BWE based on Gaussian copula 

 

4.3. Bivariate Weibull-Rayleigh distribution 

Consider unimodal marginals of Weibull- 
Rayleigh (WR) distribution then the bivariate 
Weibull-Rayleigh (BWR) distribution PDF is 

 

𝑓 (𝑡1, 𝑡2, 𝛼, 𝛽, 𝑟) =  ∏
2𝛼𝑗𝑟𝑗

𝛼𝑗

𝛽𝑗
2𝛼𝑗−1

𝑡𝑗
2𝛼𝑗−1𝑒𝑥𝑝 {− [

𝑟𝑗𝑡𝑗
2

𝛽𝑗
]

𝛼𝑗

}

2

𝑗=1

 

{
1

√1−𝜌2
(exp[

−𝜌

2(1−𝜌2)
{𝜌(𝑧1

2 + 𝑧2
2) −

2𝑧1𝑧2}])} ,       𝑡𝑗 , 𝛼𝑗 , 𝛽𝑗 , 𝑟𝑗 > 0,                                                  (19) 

0.1 0.2 0.3 0.4 0.5 0.6 
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where 𝜌 ∈ [−1,1] is a dependence parameter. Fig. 2 shows the curve and the contour of BWR model. 
 

 

(a) 
 

 
(b) 

Fig. 2: (a) the contour plot of simulation data from BWR based on Gaussian copula (b) the PDF curve of simulation data from 
BWR based on Gaussian copula 

 

4.4. Bivariate Weibull-Chi-square distribution 

Assume that the marginals are Weibull- Chi-
square (WCHI) distribution then the bivariate 
Weibull-Chi-square (BWCHI) distribution PDF is  

 

𝑓 (𝑡1, 𝑡2, 𝛼, 𝛽, 𝑟) =

∏

𝛼𝑗
2
−
𝑟𝑗
2

Γ(
𝑟𝑗
2
)
𝑡
𝑟𝑗
2 −1 exp(−

𝑡𝑗
2 )

𝛽𝑗
𝛼𝑗[1−

1−Γ(𝑡𝑗,
𝑟𝑗
2 )

Γ(
𝑟𝑗
2 )

]
{
 

 

−

𝑙𝑜𝑔[ 1−
1−Γ(𝑡𝑗,

𝑟𝑗
2 )

Γ(
𝑟𝑗
2
)
]

𝛽𝑗

}
 

 
𝛼𝑗−1

2
𝑗=1   

𝑒𝑥𝑝

{
 
 

 
 

−

[
 
 
 

−

𝑙𝑜𝑔[ 1−
1−Γ(𝑡𝑗,

𝑟𝑗
2 )

Γ(
𝑟𝑗
2 )

]

𝛽𝑗

]
 
 
 
𝛼𝑗

}
 
 

 
 

      {
1

√1−𝜌2
(exp[

−𝜌

2(1−𝜌2)
{𝜌(𝑧1

2 +

𝑧2
2) − 2𝑧1 𝑧2 }])} ,                                                (20) 

 
where 𝑡𝑗, 𝛼𝑗 , 𝛽𝑗 , 𝑟𝑗 > 0  .  

 
Fig. 3 presents the curve and the contour of BWR 

model. 
 
 
 

0.1 0.2 0.3 0.4 0.5 0.6 
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(a) 

 
(b) 

Fig. 3: (a) the contour plot of simulation data from BWCHI based on Gaussian copula (b) the PDF curve of simulation data 
from BWCHI based on Gaussian copula 

 

5. Parameter estimation 

In this section, we provide the estimation of the 
unknown parameters Bivariate Weibull-G 
distributions with Gaussian copula. There are two 
approaches to fit copula models. Parametric and 
semi-parametric are methods used to estimate 
proposed distribution parameters.  

5.1. Parametric methods of estimation 

We use two methods to fit copula models. The 
first method estimates the marginal parameters and 
the copula parameter through two steps, separately. 
The second approach has two steps to obtain the 
estimation of parameters of marginal and copula, 

where the estimation is computed from the pseudo-
observations separately. 

5.1.1. Maximum likelihood estimation (ML) 

We provide the estimation of the unknown 
parameters of BWG distributions by the approach 
maximum likelihood estimation and use the two-
step estimation (ML). This approach consists of two 
steps procedure, where the estimations of 
parameters of marginals are obtained separately 
from copula parameter. 

The log-likelihood function expressed as 
 

𝑙𝑜𝑔 𝐿 =  ∑ [𝑙𝑜𝑔 𝑓1(𝑥1𝑖) + 𝑙𝑜𝑔 𝑓2(𝑥2𝑖) +
𝑛
𝑖=1  

𝑙𝑜𝑔 𝑐(𝐹1(𝑥1𝑖), 𝐹2(𝑥2𝑖))]                                                             (21) 

 
 

 0.35  

0.1 0.2 0.3 0.4 0.5 0.6 
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hence 
 
𝑙𝑜𝑔 𝐿 = ∑ 𝑙𝑜𝑔 𝑓1(𝑥1𝑖) + ∑ 𝑙𝑜𝑔 𝑓2(𝑥2𝑖)

𝑛
𝑖=1 +𝑛

𝑖=1

∑ 𝑙𝑜𝑔 𝑐(𝐹1(𝑥1𝑖), 𝐹2(𝑥2𝑖))]
𝑛
𝑖=1                                                     (22) 

 
Firstly, we estimate the parameters of marginals 

via MLE approach separately, as given, 
 

log 𝐿𝑗 = ∑ log 𝑓𝑗(𝑥𝑗𝑖) , 𝑗 = 1,2.
𝑛
𝑖=1                                           (23)                                         

 
Secondly, copula parameters are estimated by 

differentiating the given L 
 

log 𝐿 = ∑ 𝑙𝑜𝑔 𝑐(𝐹1(𝑥1𝑖), 𝐹2(𝑥2𝑖))
𝑛
𝑖=1                                       (24) 

 
By considering the first step with (WG) family of 

distributions, the estimation of marginal parameters 
are computed by MLE method. Suppose 𝑡1, … , 𝑡𝑛 is a 
random sample fromWG(𝛼𝑗 ,𝛽𝑗 ,𝛿𝑗), then the log-

likelihood function𝐿(𝛼𝑗 ,𝛽𝑗 , 𝛿𝑗) is 

 
log 𝐿𝑗(𝑡𝑗, 𝛼𝑗 , 𝛽𝑗 , 𝛿𝑗) = 𝑛𝑙𝑜𝑔(𝛼𝑗) + 𝑛(2𝛼𝑗 − 1)𝑙𝑜𝑔(𝛽𝑗) +
∑ log (𝑔(𝑡𝑗𝑖 , 𝛿𝑗)
𝑛
𝑖=1 ) − ∑ log (1 − 𝐺(𝑡𝑗 , 𝛿𝑗)

𝑛
𝑖=1 ) + (𝛼𝑗 −

1)∑ log{−𝑙𝑜𝑔[1 − 𝐺(𝑡𝑗𝑖 , 𝛿𝑗)]}
𝑛
𝑖=1 − ∑ [−

𝑙𝑜𝑔[1−𝐺(𝑡𝑗𝑖,𝛿𝑗)]

𝛽𝑗
]
𝛼𝑗

𝑛
𝑖=1 . 

                                                                       (25)                      

 
𝜕 log𝐿𝑗(𝑡𝑗,𝛼𝑗,𝛽𝑗,𝛿𝑗)

𝜕𝛼𝑗
=

𝑛

𝛼𝑗
+ ∑ log {−𝑙𝑜𝑔[1 − 𝐺(𝑡𝑗𝑖 , 𝛿𝑗)]}

𝑛
𝑖=1 +

2𝑛𝑙𝑜𝑔(𝛽𝑗) = 0 .                                                                       (26) 
𝜕 log𝐿𝑗(𝑡𝑗,𝛼𝑗,𝛽𝑗,𝛿𝑗)

𝜕𝛽𝑗
=

𝑛(2𝛼𝑗−1)

𝛽𝑗
+

𝛼𝑗

𝛽𝑗
2∑ [−

𝑙𝑜𝑔[1−𝐺(𝑡𝑗𝑖,𝛿𝑗)]

𝛽𝑗
]
𝛼𝑗−1

𝑛
𝑖=1 =  0.                       (27) 

𝜕 log 𝐿𝑗(𝑡𝑗 , 𝛼𝑗 , 𝛽𝑗 , 𝛿𝑗)

𝜕𝛿𝑗

=∑

[
 
 
 
 
 
 
(
𝜕 (𝑔(𝑡𝑗𝑖 , 𝛿𝑗))

𝜕𝛿𝑗𝑘
)

𝑔(𝑡𝑗𝑖 , 𝛿𝑗)

]
 
 
 
 
 
 

𝑛

𝑖=1

−∑

[
 
 
 
 
 
 
(
𝜕 (1 − 𝐺(𝑡𝑗𝑖 , 𝛿𝑗))

𝜕𝛿𝑗𝑘
)

(1 − 𝐺(𝑡𝑗 , 𝛿𝑗)

]
 
 
 
 
 
 

𝑛

𝑖=1

 

−(𝛼𝑗 − 1)∑

[
 
 
 
 
 
 

(
𝜕 (1 − 𝐺(𝑡𝑗𝑖 , 𝛿𝑗))

𝜕𝛿𝑗𝑘
)

{−log (1 − 𝐺(𝑡𝑗 , 𝛿𝑗)}(1 − 𝐺(𝑡𝑗 , 𝛿𝑗)

]
 
 
 
 
 
 

𝑛

𝑖=1

+ 

𝛼𝑗

𝛽𝑗
[

{[−
𝑙𝑜𝑔[1−𝐺(𝑡𝑗𝑖,𝛿𝑗)]

𝛽𝑗
]

𝛼𝑗−1

}(
𝜕(1−𝐺(𝑡𝑗𝑖,𝛿𝑗))

𝜕𝛿𝑗𝑘
)

(1−𝐺(𝑡𝑗,𝛿𝑗)
] = 0                               (28) 

 
The solution of nonlinear equations (25), (26) 

and (27) gives the estimations of  𝛼𝑗, 𝛽𝑗  and 𝛿𝑗 via 

MLE. Therefore, 
  

 log 𝐿(𝜃) = ∑ 𝑙𝑜𝑔 𝑐 (𝐹1̂(𝑡1𝑖), 𝐹̂2(𝑡2𝑖))    
𝑛
𝑖=1                 (29) 

 

where 𝐹1̂(𝑡1) and , 𝐹̂2(𝑡2) denote as the ML of 
parameters estimations, note that these estimations 
should be obtained firstly. By equating the nonlinear 
Eq. 29 to zero, then the estimate of 𝜃 will be obtained 
using MLE method.  

5.1.2 Modified maximum likelihood estimation 
(MML) 

This method is suggested as following. In the first 
step, we use MLE approach to obtain marginal 
parameters, separately as given, 

 

log 𝐿𝑗 =∑log𝑓𝑗(𝑥𝑗𝑖) , 𝑗 = 1,2.  

𝑛

𝑖=1

 

 
The parameter estimation via MLE is obtained by 

taking equations (26), (27) and (28) equal to zero. 
Since the formula is complicated, one can solve these 
equations numerically for 𝛼𝑗 , 𝛽𝑗 , and 𝛿𝑗. Usually the 

statistician use Newton-Raphson algorithm as an 
iterative method obtain the estimates of these 
parameters as a first step. 

Secondly, the estimations of copula parameters 
are obtained through the maximization of copula 
density as 

 
log 𝐿 (𝜃) = ∑ log[𝑐𝜃(𝑈̂𝑖 , 𝑉̂𝑖)]

𝑛
𝑖=1                                               (30) 

 

where  𝐻̂𝑖 , Ψ̂i are pseudo-observations computed 
from 
 

 M̂i =
𝑆1𝑖
𝑛 + 1

=
𝑛

𝑛 + 1
𝐹̂1 (𝑡1𝑖),   

 K̂i =
𝑆2𝑖
𝑛 + 1 

=
𝑛

𝑛 + 1
𝐹̂1 (𝑡2𝑖), 

 
𝑆1𝑖  , 𝑆2𝑖   are known as the ranks of  𝑡1𝑖 , 𝑡2𝑖, 
respectively. It is important, firstly obtain the 
margins CDF parametrically. 

5.2. Semi-parametric methods of estimation 

The semi-parametric methods estimate the 
copula parameter in copula models; Methods-of-
moments approaches of namely inversion Kendall's 
and inversion of Spearman's rho. 

5.2.1. Methods of moments  

Method of moments is an approach of inversion 
Kendall's and inversion of Spearman's rho. With 
regard to Kojadinovic and Yan (2010). Let c be a 
bivariate random sample from CDF 
𝐶𝜃 [𝐹1(𝑡1 ), 𝐹2(𝑡2)], where F1 and F2 are continuous 
and continuous copula 𝐶θ such that 𝜃 ∈ 𝒪, note that 
the vector 𝒪 lie on an open interval in  𝑅2. 
Furthermore, let 𝑅1, . . . , 𝑅𝑛 are ranks vector 
correspond to 𝑡1, . . . , 𝑡𝑛 unless other assumptions. In 
what follows, all vectors are known as row vectors. 
Method-of-moments approaches are known as a 
consistent estimator for the copula 𝐶θ  moment. The 
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two best-known moments, Spearman’s rho and 
Kendall’s tau, are respectively given by 

 

𝜌(𝜃) = 12 ∫ 𝑢  𝑣 𝐶𝜃(𝑢, 𝑣) − 3  [0,1]2  
,                                     (31)   

 
and  

 

𝜏(𝜃) = 4 ∫  𝐶𝜃(𝑢, 𝑣) 𝑑 𝐶𝜃(𝑢, 𝑣) − 1 [0,1]2  
                             (32) 

 
Now, the consistent estimators are computed as 
 

𝜌𝑛 =
12

𝑛(𝑛+1)(𝑛−1)
∑ 𝑅𝑖,1𝑅𝑖,2 − 3

𝑛+1

𝑛−1

𝑛
𝑖=1 ,                                  (33) 

 
and 
 

𝜏𝑛 =
4

𝑛(𝑛−1)
∑ 1[𝑡𝑖,1 ≤ 𝑡𝑗,1]1[𝑡𝑖,2 ≤ 𝑡𝑗,2] − 1,
𝑛
𝑖=1                   (34) 

 
When the functions ρ and τ are one-to-one, 

consistent estimators of θ are given by  
 

𝜃𝑛,𝜌  =  𝜌
−1(𝜌𝑛),    𝜃𝑛,𝜏 =  𝜏

−1(𝜏𝑛). 

 
It can be called inversion of Kendall's (itau) and 

inversion of Spearman's rho (irho) respectively. For 
more information, see Kojadinovic and Yan (2010). 
As explained above the methods-of-moments (itau) 
and (irho) estimation method for copula is 
considered as a semi-parametric method of 
estimation. 

6. Goodness of fit tests for copula 

The idea of this test is to compare the result of 
experimental for copula with the estimator obtained 
parametrically derived under the null hypothesis 
(Fermanian, 2005; Dobrić and Schmid, 2007). Now, 
analyze if C provides well-represented for a certain 
copula 𝐶𝜃 

 
𝐻0: 𝐶 = 𝐶𝜃          𝑉𝑠.   𝐻1: 𝐶 ≠ 𝐶𝜃 

 
Two approaches are commonly used in the 

literature to test the goodness of fit of a copula; the 
parametric bootstrap  (Genest and  Rémillard, 2008) 
or the fast multiplier approach (Kojadinovic et al., 
2011; Genest et al., 2009). The goodness of fit tests 
based on the empirical process 

 
ℂ𝑛(𝑚, 𝑘) = √𝑛{𝐶𝑛(𝑚, 𝑘) − 𝐶𝜃𝑛(𝑚, 𝑘)}, 

 
where 𝐶𝑛(𝑚, 𝑘) is known as empirical copula of  𝑇1 
and 𝑇2 

𝐶𝑛(𝑚, 𝑘) =
1

𝑛
∑1(𝑀𝑖,𝑛 ≤ 𝑚,𝐾𝑖,𝑛 ≤ 𝑘)

𝑛

𝑖=1

,   𝑚, 𝑘 ∈ [0,1], 

 
𝑀𝑖,𝑛 , 𝑀𝑖,𝑛are pseudo-observations computed from C 

as follows 
 

𝑀𝑖,𝑛 =
𝑆1𝑖
𝑛 + 1

,   

𝐾𝑖,𝑛 =
𝑆2𝑖
𝑛 + 1

   

 
where  𝑆1𝑖  , 𝑆2𝑖  are respectively the ranks of 𝑡1𝑖 , 𝑡2𝑖. 

 
The  𝜃𝑛 is defined as estimates of 𝜃 through 

pseudo-observations, and 𝐶𝑛(𝑚, 𝑘) provides a 
consistent estimator. According to Genest et al. 

(2009),    𝑈𝑛 = ∑ {𝐶𝑛(𝑀𝑖,𝑛, 𝐾𝑖,𝑛) − 𝐶𝜃𝑛(𝑀𝑖,𝑛, 𝐾𝑖,𝑛)}
2𝑛

𝑖=1  

is the test statistics. For details see Genest, et al. 
(1995, 2009) and Kojadinovic et al. (2011). 

7. Simulation study 

The simulation study discusses the comparison of 
proposed models of WG one parameter marginal 
distributions based on Gaussian copulas. The 
correlation coefficients of Spearman's rho measure 
and also Kendall's tau measure are considered. Both 
measures are computed to obtain the values of 
copula parameters.  

Considering the following values of marginal and 
copula parameters of BWG distributions with 
different sizes of sample (n = 30, 50, 100, and 150) 
with Gaussian copula parameter  θ𝐺 = 0.8. In this 
implementation, we estimate the parameters of 
three proposed models. In addition, we compute the 
properties of estimations; variances, the property 
mean squared errors (MSE) of estimations, bias of 
estimations, and relative mean squared errors of 
parameters estimations (RMSE), this case is 
replicated 1000 times. The results of simulation are 
displayed in Tables 1 to 7.  

8. Results and discussion  

From simulation results we observe the 
following:   

 
1. As expected, most results improve with increases 

in sample size. 
2. For most selected values of 𝛼1, 𝑏1, 𝑟1, 𝛼2, 𝑏2, 𝑟2   

and  𝜃𝐺 ,  the estimation properties involve RMSE, 

MSE and bias of the estimates 𝛼̂1, 𝑏̂1, 𝑟̂1, 𝛼̂2, 𝑏̂2, 𝑟̂2 

and  𝜃̂𝐺 become smaller as the sample size 
increases. 

3. Table 1 shows, for 𝛼1 greater than 𝛼2, the most 
results 𝛼1̂ are generally better than  𝛼2̂, and the 

values of 𝛼1̂ rapidly get better than 𝛼2̂  when n is 
increased. The same conclusions we can observe 
for  𝑏2 which is greater than 𝑏1, also the result of 
 𝑟1̂ is better tha𝑛  𝑟2̂. The estimate of θ𝐺  is 
presented in Table 2. 

4. Table 3 illustrates that  𝛼2 is greater than𝛼1, the 

results of 𝛼1̂ are better than 𝛼2̂. When n is 
increased the values of 𝛼1̂ get better more 

rapidly. As well as results of 𝑏̂1 are generally 

better than 𝑏̂2. The estimates of  𝑟1 greater than 
𝑟2, and the most results 𝑟1̂ are suitable. The 
estimate of θ𝐺  is presented in Table 4. 
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Table 1: The estimates, bias, MSE and RMSE of parameters for BWE distribution 

Sample Size 
Estimates, bias, mean square errors and relative mean square errors of Parameters 

𝛼1 = 0.8 𝑏1 = 0.7 𝑟1 = 0.9 𝛼2 = 0.7 𝑏2 = 0.8 𝑟2 = 0.75 θ𝐺 = 0.8 

n=30 

ML 

0.734 
0.066 
0.016 
0.021 

0.837 
0.137 
0.108 
0.155 

0.932 
0.032 
0.044 
0.048 

0.839 
0.139 
0.035 
0.050 

0.704 
0.096 
0.053 
0.067 

0.764 
0.062 
0.062 
0.083 

0.597 
0.203 
0.041 
0.052 

MML 

0.734 
0.066 
0.016 
0.021 

0.837 
0.137 
0.108 
0.155 

0.932 
0.032 
0.044 
0.048 

0.839 
0.139 
0.035 
0.050 

0.704 
0.096 
0.053 
0.067 

0.764 
0.062 
0.062 
0.083 

0.813 
0.013 
0.000 
0.000 

n=50 

ML 

0.720 
0.080 
0.013 
0.017 

0.954 
0.254 
0.238 
0.340 

1.061 
0.161 
0.160 
0.177 

0.820 
0.120 
0.024 
0.034 

0.728 
0.072 
0.020 
0.025 

0.781 
0.006 
0.006 
0.008 

0.525 
0.275 
0.076 
0.095 

MML 

0.720 
0.080 
0.013 
0.017 

0.954 
0.254 
0.238 
0.340 

0.061 
0.161 
0.160 
0.177 

0.820 
0.120 
0.024 
0.034 

0.728 
0.072 
0.020 
0.025 

0.781 
0.006 
0.006 
0.008 

0.771 
0.029 
0.000 
0.001 

n=100 

ML 

0.711 
0.089 
0.011 
0.014 

0.683 
0.017 
0.014 
0.020 

0.786 
0.114 
0.057 
0.064 

0.811 
0.111 
0.017 
0.024 

0.760 
0.040 
0.057 
0.072 

0.822 
0.094 
0.094 
0.126 

0.812 
0.012 
0.000 
0.000 

MML 

0.711 
0.089 
0.011 
0.014 

0.683 
0.017 
0.014 
0.020 

0.786 
0.114 
0.057 
0.064 

0.811 
0.111 
0.017 
0.024 

0.760 
0.040 
0.057 
0.072 

0.822 
0.094 
0.094 
0.126 

0.781 
0.019 
0.000 
0.000 

n=150 

ML 

0.706 
0.094 
0.148 
0.185 

0.864 
0.164 
0.750 
1.071 

0.970 
0.070 
0.441 
0.490 

0.806 
0.106 
0.189 
0.270 

0.620 
0.180 
0.707 
0.886 

0.660 
0.025 
0.334 
0.445 

0.628 
0.172 
0.398 
0.498 

MML 

0.706 
0.094 
0.148 
0.185 

0.864 
0.164 
0.750 
1.071 

0.970 
0.070 
0.441 
0.490 

0.806 
0.106 
0.189 
0.270 

0.620 
0.180 
0.707 
0.886 

0.660 
0.025 
0.334 
0.445 

0.804 
0.004 
0.008 
0.011 

 
Table 2: The estimation study of correlation parameter for BWE distribution 

Sample Size 
θ𝐺 = 0.8 

Estimates bias 𝑀𝑆𝐸 RMSE Estimation Methods 

n=30 

0.597 
0.813 
0.817 
0.821 

0.203 
0.013 
0.017 
0.021 

0.041 
0.000 
0.000 
0.000 

0.052 
0.000 
0.000 
0.001 

ML 
MML 
Itau 
IRho 

n=50 

0.525 
0.771 
0.755 
0.762 

0.275 
0.029 
0.045 
0.038 

0.076 
0.001 
0.002 
0.001 

0.095 
0.001 
0.003 
0.002 

ML 
MML 
Itau 
IRho 

n=100 

0.812 
0.781 
0.777 
0.776 

0.012 
0.019 
0.023 
0.024 

0.000 
0.000 
0.001 
0.001 

0.000 
0.000 
0.001 
0.001 

ML 
MML 
Itau 
IRho 

n=150 

0.628 
0.804 
0.806 
0.804 

0.172 
0.004 
0.006 
0.004 

0.398 
0.008 
0.021 
0.012 

0.498 
0.011 
0.026 
0.015 

ML 
MML 
Itau 
IRho 

      

Table 3: The estimates, bias, MSE and RMSE of parameters for BWR distribution 

Sample Size 
Estimates ,bias, mean square errors and relative mean square errors of Parameters 

𝛼1 = 0.7 𝑏1 = 0.8 𝑟1 = 0.8 𝛼2 = 0.8 𝑏2 = 0.7 𝑟2 = 0.5 θ𝐺 = 0.8 

n=30 

ML 

0.868 
0.168 
0.148 
0.212 

0.734 
0.066 
0.016 
0.021 

0.835 
0.035 
0.039 
0.049 

0.324 
0.476 
0.231 
0.289 

0.839 
0.139 
0.035 
0.050 

0.936 
0.207 
0.207 
0.413 

0.359 
0.441 
0.195 
0.243 

MML 

0.868 
0.168 
0.148 
0.212 

0.734 
0.066 
0.016 
0.021 

0.835 
0.035 
0.039 
0.049 

0.324 
0.476 
0.231 
0.289 

0.839 
0.139 
0.035 
0.050 

0.936 
0.207 
0.207 
0.413 

0.813 
0.013 
0.000 
0.000 

n=50 

ML 

0.951 
0.251 
0.238 
0.340 

0.720 
0.080 
0.013 
0.017 

0.927 
0.127 
0.135 
0.169 

0.471 
0.329 
0.109 
0.137 

0.820 
0.120 
0.024 
0.034 

1.384 
0.858 
0.858 
1.717 

0.417 
0.383 
0.147 
0.184 

MML 

0.951 
0.251 
0.238 
0.340 

0.720 
0.080 
0.013 
0.017 

0.927 
0.127 
0.135 
0.169 

0.471 
0.329 
0.109 
0.137 

0.820 
0.120 
0.024 
0.034 

1.384 
0.858 
0.858 
1.717 

0.771 
0.029 
0.001 
0.001 

n=100 ML 
0.685 
0.015 

0.711 
0.089 

0.684 
0.116 

0.631 
0.169 

0.811 
0.111 

1.745 
2.263 

0.069 
0.731 
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0.017 
0.024 

0.011 
0.014 

0.052 
0.065 

0.134 
0.168 

0.017  
0.024 

2.263 
4.525 

0.535 
0.668 

MML 

0.685 
0.015 
0.017 
0.024 

0.711 
0.089 
0.011 
0.014 

0.684 
0.116 
0.052 
0.065 

0.631 
0.169 
0.134 
0.168 

0.811 
0.111 
0.017 
0.024 

1.745 
2.263 
2.263 
4.525 

0.781 
0.019 
0.000 
0.000 

n=150 

ML 

0.893 
0.193 
0.908 
1.297 

0.706 
0.094 
0.148 
0.185 

0.870 
0.070 
0.359 
0.449 

0.321 
0.479 
0.850 
1.063 

0.806 
0.106 
0.189 
0.270 

0.919 
0.191 
0.701 
1.402 

0.455 
0.345 
0.438 
0.547 

MML 

0.893 
0.193 
0.908 
1.297 

0.706 
0.094 
0.148 
0.185 

0.870 
0.070 
0.359 
0.449 

0.321 
0.479 
0.850 
1.063 

0.806 
0.106 
0.189 
0.270 

0.919 
0.191 
0.701 
1.402 

0.804 
0.004 
0.008 
0.011 

         

5. Now, Table 5 displays 𝛼2 greater than𝛼1, the most 
results 𝛼2̂ are generally better than𝛼1̂, and the 

values of  𝛼2̂ get better more rapidly than 𝛼1̂  as 
the sample size increases. For  𝑏1greater than𝑏2, 

the results 𝑏̂1 look better than 𝑏̂2, the values of 

𝑏̂1get better more rapidly than the values of 𝑏̂2 as 

the sample size increases. Similarly, for 𝑟1   

greater than 𝑟2, the most results 𝑟2̂ for  are 
generally better than 𝑟1̂ for  Furthermore, the 
values of 𝑟2̂ get better more rapidly than the 

values of 𝑟1̂. The estimate of correlation model is 
displayed in Table 6. 

 
Table 4: The estimation study of correlation parameter for BWE distribution merged with copula 

Sample Size 
θ𝐺 = 0.8 

Estimates bias 𝑀𝑆𝐸 RMSE Estimation Methods 

n=30 

0.359 
0.813 
0.817 
0.821 

0.441 
0.013 
0.017 
0.021 

0.195 
0.000 
0.000 
0.000 

0.243 
0.000 
0.000 
0.001 

ML 
MML 
Itau 
IRho 

n=50 

0.417 
0.771 
0.755 
0.762 

0.383 
0.029 
0.045 
0.038 

0.147 
0.001 
0.002 
0.001 

0.184 
0.001 
0.003 
0.002 

ML 
MML 
Itau 
IRho 

n=100 

0.069 
0.781 
0.777 
0.776 

0.731 
0.019 
0.023 
0.024 

0.535 
0.000 
0.001 
0.001 

0.668 
0.000 
0.001 
0.001 

ML 
MML 
Itau 
IRho 

n=150 

0.455 
0.804 
0.806 
0.804 

0.345 
0.004 
0.006 
0.004 

0.438 
0.008 
0.021 
0.012 

0.547 
0.011 
0.026 
0.015 

ML 
MML 
Itau 
IRho 

 
Table 5: The results of simulation study for BWCHI distribution 

Sample Size 
Estimates, bias, mean square errors and relative mean square errors of Parameter 

𝛼1 = 0.7 𝑏1 = 0.8 𝑟1 = 4 𝛼2 = 0.8 𝑏2 = 0.7 𝑟2 = 3 θ𝐺 = 0.8 

n= 
30 

ML 

1.300 
0.600 
1.904 
2.719 

0.899 
0.099 
1.159 
1.449 

4.249 
0.249 
8.333 
2.083 

1.158 
0.358 
1.297 
1.622 

1.052 
0.352 
2.060 
2.943 

3.204 
5.532 
5.532 
1.844 

0.511 
0.289 
1.134 
0.385 

 MML 

1.300 
0.600 
1.904 
2.719 

0.899 
0.099 
1.159 
1.449 

4.249 
0.249 
8.333 
2.083 

1.158 
0.358 
1.297 
1.622 

1.052 
0.352 
2.060 
2.943 

3.204 
5.532 
5.532 
1.844 

0.763 
0.037 
0.067 
0.083 

n= 
50 

ML 

1.22 
0.422 
1.107 
1.582 

0.811 
0.0107 
0.150 
0.188 

4.300 
0.300 
6.659 
1.665 

1.004 
0.204 
0.725 
0.906 

0.943 
0.243 
0.254 
0.363 

3.200 
4.176 
4.176 
1.392 

0.547 
0.253 
0.064 
0.080 

MML 

1.22 
0.422 
1.107 
1.582 

0.811 
0.0107 
0.150 
0.188 

4.300 
0.300 
6.659 
1.665 

1.004 
0.204 
0.725 
0.906 

0.943 
0.243 
0.254 
0.363 

3.200 
4.176 
4.176 
1.392 

0.771 
0.029 
0.001 
0.001 

n= 
100 

ML 

0.964 
0.264 
0.521 
0.745 

0.747 
0.053 
0.067 
0.084 

4.274 
0.274 
4.412 
1.103 

0.866 
0.068 
0.370 
0.463 

0.870 
0.170 
0.127 
0.182 

3.194 
2.831 
2.831 
0.944 

0.669 
0.131 
0.017 
0.021 

MML 

0.964 
0.264 
0.521 
0.745 

0.747 
0.053 
0.067 
0.084 

4.274 
0.274 
4.412 
1.103 

0.866 
0.068 
0.370 
0.463 

0.870 
0.170 
0.127 
0.182 

3.194 
2.831 
2.831 
0.944 

0.781 
0.019 
0.000 
0.000 

n= 
150 

ML 

0.926 
0.226 
0.447 
1.852 

0.735 
0.065 
0.622 
0.777 

4.155 
0.155 
2.912 
2.679 

0.807 
0.007 
0.884 
1.105 

0.841 
0.141 
1.108 
0.430 

3.166 
2.0253 
2.025 
2.484 

0.670 
0.130 
0.229 
0.286 

MML 0.926 0.735 4.155 0.807 0.841 3.166 0.804 
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0.226 
0.447 
1.852 

0.065 
0.622 
0.777 

0.155 
2.912 
2.679 

0.007 
0.884 
1.105 

0.141 
1.108 
0.430 

2.0253 
2.025 
2.484 

0.004 
0.008 
0.011 

 

Table 6: The results of correlation parameter for BWCHI distribution 

Sample Size 
θ𝐺 = 0.8 

Estimates bias 𝑀𝑆𝐸 RMSE Methods of Estimation 

n=30 

0.511 
0.763 
0.796 
0.797 

0.289 
0.037 
0.004 
0.003 

1.134 
0.067 
0.010 
0.022 

0.385 
0.083 
0.013 
0.007 

ML 
MML 
Itau 
IRho 

n=50 

0.547 
0.771 
0.755 
0.762 

0.253 
0.029 
0.045 
0.038 

0.064 
0.001 
0.002 
0.001 

0.080 
0.001 
0.003 
0.002 

ML 
MML 
Itau 
IRho 

n=100 

0.669 
0.781 
0.777 
0.776 

0.131 
0.019 
0.023 
0.024 

0.017 
0.000 
0.001 
0.001 

0.021 
0.000 
0.001 
0.001 

ML 
MML 
Itau 
IRho 

n=150 

0.670 
0.804 
0.806 
0.804 

0.130 
0.004 
0.006 
0.004 

0.229 
0.008 
0.021 
0.012 

0.286 
0.011 
0.026 
0.015 

ML 
MML 
Itau 
IRho 

      

6. We remark that the efficient estimators of 
marginal parameters of three models differ 
according to the parameters. It seems that ML 

estimates𝛼̂1, 𝑏̂1, 𝑟̂1, 𝛼̂2, 𝑏̂2, 𝑟̂2   and of three models 
are the same corresponding MML estimates. 

7.  For copula parameter, the MML provides 
efficient most estimates than ML, Itau, and Irho, 
for all models with different marginals 
parameters and Gaussian copula. It is also note 
that the ML and MML estimates for all copula 
parameters are close. 

8. For Gaussian, copula parameters it is observe 
that to Itau, and Irho estimates of three models 
are the same corresponding three models. 

To check if the selected parametric copula 
function is suitable for the marginals, goodness of fit 
test statistics using selected copula function for the 
marginals is preformed. The results in Table 7 shows 
a non-significant p-value obtained using parametric 
bootstrap for all models which indicate that selected 
parametric copula function provide appropriate fit 
to the marginals. In addition, estimate of the copula 
parameter based on ML, MML, Itau, and Irho 
methods for the Gussian copula for all models is 
approximately equals.  This estimates are used as 
initial value when fitting these copula models using 
BWG marginals. 

 
Table 7: The results of goodness of fit for selected copula functions. 

Model statistic p-value Estimate of copula parameter 𝜃 Estimation methods 

BWE 

0.0235 0.3272 0.7949 Ml 
0.0235 0.3422 0.79485 MML 
0.0270 0.2792 0.7548 Itau 
0.0261 0.3651 0.7625 Irho 

BWR 

0.0235 0.3272 0.7949 Ml 
0.0235 0.3422 0.7949 MML 
0.0270 0.2792 0.7548 Itau 
0.0261 0.3651 0.7625 Irho 

BWCHI 

0.0235 0.3272 0.7949 Ml 
0.0235 0.3422 0.7949 MML 
0.0270 0.2792 0.7548 Itau 
0.0261 0.3651 0.7625 Irho 

     

9. Conclusion 

This paper presents a family of distributions with 
one parameter which construct Bivariate Weibull-G 
distributions merging with Gaussian copula. The 
characteristics are discussed and the parameters 
estimations are obtained via two approaches, 
parametric and semi-parametric methods. To study 
the effectiveness of models, the simulation cases are 
presented with different values of model parameters 
and different sample sizes. One can conclude when 
the sample size is increased the results become more 
consistent. Moreover, the selection of copula 
function is suitable for the bivariate models.  To sum 
up. The proposed models provide high flexibility and 
could deal with different structure type of data set. 

In future work, implementing other distribution with 
more than parameters to construct Bivariate 
Weibull-G models, also modifying the models for 
multivariate distribution. 
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